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We study the stability of an interface between two inviscid magnetic fluids of 
different densities flowing parallel to each other in an oscillatory manner. The 
system is pervaded by a uniform oblique magnetic field distribution. The analysis 
allows for mass and heat transfer across the interface. A general eigenvalue 
relation is derived and discussed analytically. The classical stability criterion is 
found to be substantially modified due to the effect of the oblique magnetic field 
with mass and heat transfer. Some previous studies are reported for appropriate 
data choices. The longitudinal magnetic field has a strong stabilizing influence 
on all wavelengths, which can be used to suppress the destabilizing influence 
of the mass and heat transfer. We conclude with a discussion of the stability of 
unsteady shear layers on the basis of the results. The parametric excitation 
of the surface waves is analyzed by means of the multiple-time-scales method. 
The transition curves are obtained analytically. 

1. INTRODUCTION 

When a body of fluid underlies a denser one, a gravitational instability 
results. This is commonly termed Rayleigh-Taylor instability, where the two 
fluids are separated by a horizontal boundary. The theoretical and experimen- 
tal properties of such instabilities have been used to model a number of 
geophysical processes. Many of the geophysical processes of interest could 
be better modeled by the introduction of a gravitationally stable fluid beneath 
the buoyant layer. Wilcock and Whitehead (1991) reported both theoretical 
and experimental results for the instability developed by a three-layer system 
comprising a thin layer of buoyant low-viscosity fluid sandwiched between 
two thick layers of equal properties. The initial stages of the Rayleigh-Taylor 
instability can be analyzed theoretically using linearized flow equations. The 
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solutions can be obtained for the growth rate of instabilities as a function of 
wavelength and other parameters of the system (Chandrasekhar, 1961). 

When different layers of a stratified fluid are in horizontal motion, we 
get another type of instability. The instability of the plane interface between 
two superposed fluids with a relative horizontal velocity is called Kelvin- 
Helmholtz instability. Kelvin-Helmholtz instability is important in under- 
standing a variety astrophysical phenomena involving sheared plasma flow 
(e.g., the stability of the solar wind-magnetosphere interface, interaction 
between adjacent streams of different velocities in the solar wind, and dynamo 
generation of cosmic magnetism). The linear development of Kelvin- 
Helmholtz-instability magnetic fluids has been carded out by Rosensweig 
(1985). His analysis revealed that the velocity difference that can be supported 
by the fluids before the instability sets in is enhanced if the difference in the 
permeabilities of the fluids across the interface and the strength of the applied 
magnetic field are increased. Walker et al. (1993) presented a modified 
Kelvin-Helmholtz instability model that predicts that an instability can occur 
at the free surface of a fluid with a nonuniform velocity. 

The effect of a magnetic field on the stability of a steady flow field has 
received considerable attention (see, for example, Chandrasekhar, 1961). The 
effect of an unsteady flow is of some interest; it was studied by Roberts 
(1973), who considered the coupling between the oscillatory component in 
the basic flow and the effect of the magnetic field. The effect of an oscillatory 
magnetic field (in addition to a steady component) on a steady velocity 
distribution has been investigated by Drazin (1961) with the intention of 
determining whether such an oscillatory field is more stabilizing than the 
corresponding steady one. The nonlinear wave propagation on the interface 
between two superposed fluids acted upon by a tangential periodic magnetic 
field has been investigated by E1-Dib (1993), who used the multiple-time- 
scales method. His stability analysis reveals the existence of both resonant 
and nonresonant cases. 

In all the work cited above, the stability was studied when the interfacial 
transfer of mass and heat was negligible. The mass transfer across the interface 
due to evaporation and condensation processes would play an important role. 
The transfer of mass and heat across an interface is important for solving 
many problems in chemical engineering and geophysics. The effect of mass 
and heat transfer across an interface on the motion of fluids was given by 
Hsieh (1978), who formulated the general problem of interfacial fluid flow 
with mass and heat transfer in plane geometry and applied it to discuss the 
stability of both the Rayleigh-Taylor and the Kelvin-Helrnholtz models in 
the problem of film-boiling heat transfer. Nayak and Chakraborty (1984) 
studied the problem of Kelvin-Helmholtz stability with mass and heat transfer 
but in cylindrical geometry, using Hsieh's simplified formulation and com- 



Kelvin-Helmholtz Instability of Miscible Ferrofluids 427 

pared the results with those in plane geometry. Recently, Moatimid (1994) 
studied the effect of a periodic electric field with mass and heat transfer on 
the Rayleigh-Taylor instability. His analysis resulted in a Mathieu equation. 

In this work, we investigate the stability of an unsteady basic flow of 
inviscid ferrofluids. The analysis allows for mass and heat transfer across 
the interface. The fluids are pervaded by a uniform oblique magnetic field 
distribution. The corresponding steady problem is the classic one of Kelvin-  
Helmholtz instability. We show that the oscillations of the basic flow can 
cause a parametric resonance. The analysis results in an ordinary differential 
equation with periodic coefficients which are analyzed by means of the 
method of multiple-time-scales. The analysis reveals the existence of both 
resonant and nonresonant cases. The transition curves are obtained. 

2. T H E  GOVERNING BASIC EQUATIONS 

We wish to consider the stability of a flow which is dependent upon 
time and also satisfies the basic equations of motion. Consider the parallel 
flow of two incompressible, inviscid magnetic fluids confined between two 
parallel rigid planes z = -h~ and z = h2. Let x and y be the coordinates in 
the plane of the interface; z = "q(x, y, t), where z is the coordinate normal 
to the interface; and u, v, and w are the corresponding velocity components. 
At the equilibrium state, the interface is taken to be z = 0. Fluid 1 occupies 
the region -h~ < z < 0, while fluid 2 occupies the region xl < z < h2. The 
densities of the lower and upper fluids are pU) and p(2), respectively. The 
motion is assumed to be irrotational under gravity g(0, 0, - g ) .  Let the 
velocities of the basic flow be U~J)(t), where j = 1, 2 refers, respectively, to 
the lower or upper fluids. The temperatures at z = - h b  z = h2, and z = 0 
are kept at, respectively, T~, T2, and To, so that Tl > To > T2. 

Consider that the fluids are pervaded by a uniform oblique magnetic 
fluid H 0") = (H0, 0, H~)). We shall assume that there are no free currents at 
the surface of separation in the equilibrium state, and therefore the magnetic 
induction is continuous at the interface, i.e., lxU)H~ ) = ~L(2)H.,(2) where ~L (1) 
and I.~ (2) are the lower and the upper magnetic permeabilities, respectively. 

For an irrotational flow, an integral of the equations of motion may be 
written as 

0qCJ ) "re j) 1 (u(2)2 .4_ lflj)2 ..~ w(J)2 ) ..{_ gz + - C~)(t)  (2.1) 
p~j--~ 4- ~ Ot 

where "n is the pressure, V <y) = (u ~j), v ~/), w (y)) is the velocity field, ~0 is the 
velocity potential, and C~J)(t) is an arbitrary integration function of time, 
which may be taken as 

C~ = P ~j)UCj)2/2 - ~wi _(j)~2,1 o + • w~J)14(J)2-- , (2.2) 
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In order to have a parallel basic flow, the interface must be plane, and 
the pressure must balance across it. By suitable choice of C(J)(t), one can 
balance all terms except the terms involving the ~p~), which depend upon the 
x direction as 

(p(J) = xU(J) ( t )  (2.3) 

However, the difference in pressure can be set equal to zero if 

dU o) _ p (2) dU(Z) 
(2.4) 

dt p(l) dt 

which, for the statically stable case p(2)/p.) < 1, amounts to a balancing flow 
of smaller magnitude but in phase with the unsteady flow in the upper fluid. 
Actually, one would expect a modification of the flow in the lower fluid with 
a more complicated phase relationship due to viscous shearing action. 

On the other hand, because we assumed that no free currents flow in 
any of the two fluids, Ampere's law requires the magnetic field H to be curl- 
free and thus represented as the gradient of the magnetic scalar potential ~(x, 
y, z; t) as 

H r = H0ex + H~)ez - V~ U), j = 1, 2 (2.5) 

where ex and e z are unit vectors along the x and z directions, respectively. 
Since each region has a uniform magnetic permeability, Gauss' law 

requires the magnetic scalar potential to obey Laplace's equation. Thus the 
basic equations governing the hydrodynamic and the magnetic field poten- 
tials are 

with 

V2q0 (1) = V2~ (I) = 0, 

V2~ (2) = 7211/(2) = 0, 

-ha < z < "q (2.6) 

TI < z < h2 (2.7) 

(++'") = (++"')  - - 0  
03Z )z=--hl ~k 03x ~=-hl 

= = 0  L=h2 \--L-x Lo+2 

(2.8) 

(2.9) 

3. THE SOLUTIONS OF THE PERTURBATION EQUATIONS 

We now assume the flow to be perturbed by a disturbance of sufficiently 
small magnitude, so that we may consider the linearized version of (2.1) for 
the disturbance pressure "rr~ j) as 
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--~) = p(Y)U(Y)(t) a~P~ ) O~p~( ) + pc/)gml + pCi) Ot (3.1) 

As it is defined, "q is the displacement of the interface from z = 0. We assume 
that the disturbance may be expressed in terms of its normal modes in the 
(x, y) directions and so express any function • y, z; t) as 

• y, z; t) = • t) exp[i(xkx + yky)] (3.2) 

As we consider the fluid to be of finite depth, the appropriate solutions of 
the equations of motions are then (for j = 1, 2) 

r = AC/)(t) cosh k[z + (-1)J+lhj] exp[i(xkx + yky)] (3.3) 

dd~ ) = B(J)(t) sinh k[z + ( -  1)Y+lhj] exp[i(xkx + yky)] (3.4) 

where k 2 = k~ + k~, and A(J)(t) and BC/)(t) are time-dependent integration 
constants to be determined from the appropriate boundary conditions. 

Since the transfer of mass across the interface represents a transformation 
of the fluid from one phase to another, there is invariably a latent heat 
associated with the phase change. Essentially, through this interfacial coupling 
between the mass transfer and the release of latent heat the motion of fluids 
is influenced by the thermal effects. Therefore, when there is significant mass 
transfer across the interface, the transfer of heat in the fluid has to be taken 
into consideration. 

Based on a careful investigation of the results obtained by Hsieh (1972), 
it is reasonable to deduce that the amount of released latent heat depends 
mainly on the instantaneous position of the interface. More specifically, let 
us express the interface by 

S(x, y, z; t) = z - "q(x, y; t) (3.5) 

that the interfacial condition for energy transfer can be We propose 
expressed as 

L ~) OS �9 VS) = O(xl) 
P (Ot + v~  (3.6) 

where L is the latent heat released when the fluid is transformed from phase 
1 to phase 2. The expression 0(~l) essentially represents the net heat flux 
from the interface when such a phase transformation is taken place. In general 
(Hsieh, 1972), the heat flux has to be determined from the equations governing 
the heat transfer in the fluids. This is completely determined by the coupling 
between the dynamics and the thermal exchanges in the entire flow region. 
In this simplified version, the assumption is that 0 is simply a function of 
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xl, and moreover, 0 is to be determined from the heat exchange relations in 
the equilibrium state. 

The heat fluxes in the +z  direction in regions 1 and 2 are I~(T~ - To)/ 
hi and kt2)(T0 - T2)/h2, respectively. As in Hsieh (1978), we denote 

/62)(To - T2) /6t)(Tl - -  T2) 
0(z) - (3.7) 

h 2 - z  hi + z  

It is clear that 0(z) represents the net heat flux from the interface into the 
fluid regions. Since it is an equilibrium state, we have 

0(0) = 0 (3.8) 

Now, we can expand 0(~1) about "q = 0 by 

From (3.7), we obtain 

where 

I 
o(n)  = o ' ( o ) n  + ~ o"(o)n 2 + . . .  

G _ 
k(2)(To - T2) k(1)(T1 - To) 

h 2 h~ 

(3.9) 

(3.10) 

, , .  (. 
AtJ)(t) k sinh khj dt + ikxUCi)(t) § "q (3.11) 

O t = - ~  4- 

The physical system used before is considered as a l iquid-vapor system. 
Since the vapor phase is usually hotter than the liquid phase, et is always 
positive. If fluid 2 is a liquid and fluid 1 is a vapor, then L is positive and 
G is also positive, since Ti > To > T2. If fluid 1 is a liquid and fluid 2 is a 
vapor, then L and G are both negative. 

By the use of  (3.3) and (3.11), we may now write from (3.1) the jump 
in perturbation pressure across the interface as 

where 

which is the equilibrium heat flux from the plane z = -h~ to z = h2. Therefore, 
we may express AO)(t) in terms of lq(t) as 
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�9 { f 3 " ) u ( ' ( t )  

+ U 

where 

k(~r?)- Tr?)) 
p(l) coth kh~ + p ̀2) coth kh2 

f {~(1) ~(2)~ ~ d'q 
- d2"qdt 2 + ~ct~-~(-ff + -p-~} + 2ikx[~")U'l'(t) + [3'2)U(2)(t)] j -~- 

+ { kg(pO) _ p(Z)) _ k~[~'l)U(t)2(t) + [3'2)U(2)E(t)] 
p,t) coth kh~ + p'2) coth khl 

[ d [3(2) d ] 
+ ikx ~(l) -fit U~ + dt U(2)(t) 

+ y ) ?  (3.12) 

p(i) coth kh i 
[ 3(j) = p(t) coth khl + p(2) coth kh2 

For the magnetic part, following the boundary conditions as given by 
Rosensweig (1985), one gets 

(1~ 'j§ - ~'J))[ikxHo sinh khi+ I + (-l)J+lHO, ") cosh khj+d 
B(J)(t) = k(~ (I) cosh khl sinh kh2 + [~(2) sinh khl cosh kh2) 

(3.13) 

The jump in the perturbed surface pressure is allowed due to the effect 
of surface tension, so that 

,l.r] 2) -- ~ .L(2) ~L (I) 2 (H(2)2 -- H}2)2) -- ,fill) _at_ ~ (H(1)2 _ H}I)2) = -- k2cr,q 

(3.14) 

where tr is the surface tension coefficient, 

H~ = (n'I-I) 2 and H~ = (n • H) 2 

Here n is the unit vector normal to the interface�9 The final equation of "q(t) 
is then 

d2"q + ~a,-v;v,, + + 2ikx[~(')U(')(t) + 13(2)U(2'(t)] 
d t  2 

{ 1 [ + k(pO) _ p(2))g + k3(r 
p(t) coth khl + p(:) coth kh2 
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k~x(~l~(2) - 1~O))2H~ 
+ 

Ix (l) coth kh~ + ~(2) coth kh2 

~(1~(2)- 1~(1))2H2., kh2) ~ J 
- t--anh   7  tanh 

[ d 13( ) d ] + ik~ [30) dt U~ + -dt u(E)(t) 

:[3(I)U(l)(t) [~(2)U(2)(t)'~ / 
+iakx~ - ~  + ~ " ) ~ ' q = 0  (3.15) 

where ~~ = ix(2)H~ ) = H**. 
Equation (3.15) is a second-order ordinary differential equation with 

time-dependent coefficients. The nature of its solution will determine the 
stability or instability of the considered system. For thick layers (hL2 -+ ~), 
an equation similar to (3.15) was first obtained, in the absence of mass and 
heat transfer as well the magnetic field, by Kelly (1965) and then by Roberts 
(1973) in the presence of a tangential magnetic field. Roberts' discussion of 
the effect of the unsteady Kelvin-Helmholtz flow is therefore applicable, 
with slight changes, to the considered system. 

The analysis of equation (3.15) is classified into two categories as in 
the following two sections. 

4. THE STABILITY OF STEADY KELVIN-HELMHOLTZ FLOW 

When the velocities of the basic flow are constants, equation (3.15) 
becomes 

d2"q + L~t~ + -  + 2ikx(p(I)U (') + 13(2)u(2))j - ~  
dt 2 p(2)j 

( 1 [ + p(2) k(p(I) _ p (2 ) )g  + k3or 
p(~) coth kh~ + coth kh2 

~(1~(2)- 1~(1))2H02 
+ 

Ix (~) coth kh~ + IX (2) coth kh2 

~(ix(2) - ~(1))2H2., q 

:[~(I)u(I) [3(2) U(2)~ 1 
+iakx|\ ~ + ~ ")fq = 0  (4.1) 
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Equation (4.1) was first obtained, in the absence of mass and heat 
transfer, by Rosensweig (1979). In the absence of the magnetic field, equation 
(4.1) reduces to that obtained by Hsieh (1978). 

The stability criterion is based on the condition that ~q(t) is a bounded 
function. Thus, the critical stability condition becomes 

j_= 
I- 1 [k(pO) _ p(2))g + k3cr 

pCl) coth kh~ + p<Z) coth kh2 

k~(~<z)- ~I,)2H~ 
+ 

t x<l) coth khl + ix cz) coth kh2 

b2(,, (2) _ ,, (1)h2]r./2 'l 

J i.~t x)lx(z,(ix(,---5 ~ l a  ~:~ ~ ~ tanh kh2) 

__ kx2(e(1) _ e(2,)2[~(l,f~(2, [ 1  ( p ( 2 )  _ p(l, ~2[.~(i,[.~(2,1 
+ ~p(l)~'( '~ '~ p---~'[~(2)/ ~ ~ J = 0  

(4.2) 

The system is stable if J > 0 and unstable if J < 0. The expression of 
J differs from that of the classical Kelvin-Helmholtz problem by the addi- 
tional last term. 

From the above relation, we find that the critical condition of stability, 
in the presence of mass and heat transfer, is independent of the mass and 
heat transfer coefficient, but it differs from that in the absence of mass and 
heat transfer by the additional last term. On the other hand, when U ~ = 
U (2) (Rayleigh-Taylor problem) or pO) = p(Z), this term disappears in (4.2). 
This means that the mass and heat transfer has no effect on the problem. 
Therefore, the last term in (4.2) arises due to the effect of mass and heat 
transfer. Since this term is also positive, we conclude the destabilizing influ- 
ence of the mass and heat transfer on the horizontal wave motion. The 
same role is also played by the transverse magnetic field. In contrast, the 
longitudinal field has a stabilizing effect and this can be used to suppress 
the destabilizing influence of the parameter cx. 

5. THE STABILITY ANALYSIS OF AN OSCILLATORY 
KELVIN-HELMHOLTZ FLOW 

Let us now consider the time-dependent problem described by equation 
(3.15). From the preliminary remarks concerning parametric resonance, we 
suspect that a resonance might occur when the flow velocities vary periodi- 
cally with time and then consequently the wave speed is being modified 
continuously. 
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We use the method of multiple scales (Nayfeh, 1985) in order to obtain 
an approximate solution and analyze the stability criteria for the problem. In 
accordance with this scheme, a small dimensionless parameter �9 is needed. 
Introducing this small parameter as 

U(J)(t) = eU~o j) cost o~t (5.1) 

where U0 ~) is some constant having the dimension of velocity, we have that 
equation (3.15) then becomes 

where 

d2"q + (al + i�9 cos tot) d'q 
dt 2 dt 

+ [a2 + i�9 cos tot + b 3 sin tot)]x I = 0 

fib(l, ~(2)~ 
at = et.tp-'?i S + p(2>] 

b, = 2k,,(f3mU~o 1) + 13(2)U~o =)) 

[kg(pO ) - p(2)) + 1 
~cr 

az = pO) coth khl + p(2) coth kh2 

kx2(~(2)- ~(I))2H2 
+ 

~i, (1) coth kh~ + ~(2) coth kh2 

(5.2) 

khg] J ~(1)I.L(2)(~U-3 t--~la ~:h~ T~2;tanh 

. fl3<l)U<o') iaa>u<g>'  
+ Y 7 

b I - -tokx(13(l)U(oi) + 13(2)U(0 2)) 

One assumes that the solution of equation (5.2) can be represented by 

"q(t, e) = n0(T0, Tt, T2) + erll(T0, T1, T2) + e2~q2(T0, TI, 7"2) + "'" (5.3) 

Then we insert the above perturbation solution (5.3) into Mathieu's equation 
(5.2), transform the time derivatives, and collect coefficients of each power 
of �9 These equations must hold independently because sequences of �9 are 
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linearly independent. The resulting equations can be solved successively. 
Thus we have 

e~ (Do 2 + al Do + a2)rio = 0 (5.4) 

el: (D~ + a l D o  + a2)Th 

= -2DoD:qo - al D f q o  - ibl cos toTo Do'qo - i(b2 cos toTo 

+ b3 sin toTo)'qo (5.5) 

e2. (D~ + al Do + a2)~2 

-- -2DoDtXh - (D E + 2DoDE)~qo - a l ( D f q l  + D2rio) 

- ibl  cos toTo (Do'q, + Dt'qo) - i(b2 cos o~To + b3 sin toTo)'ql 
(5.6) 

where Dn - -  O/OTn. 
With this approach it is convenient to write the solution of equation 

(5.4) in the form 

rio(To, Tt, T2) = ~,(Ti, T2) exp f~To + c.c. (5.7) 

where ~/is an unknown complex function of T, and 7"2, c.c. represents the 
complex conjugate of the preceding terms, and f~ is a complex frequency 
given by 

~2 + a l l )  + a2 = 0 (5.8) 

If l )  = l)r + ida- with real 12r and 12/-, then we get 1~ = - l a  I and 12/2 
I 2 = a2 - ya~. Thus the stability conditions in the zeroth order in e are 

1 aT > 0 (5.9)  a l > 0 and a2 - ~ -- 

The first condition is automatically satisfied, while the second one represents 
the stability criterion in the case of Rayleigh-Taylor instability. 

The solution of equation (5.5) can be obtained from knowledge of the 
zeroth order in e. Therefore, substitution from (5.7) into (5.5) yields 

(D2o + al Do + a2)ri1 

= - -2 i l2 iD1 ~ exp l)To 

( l ) ]  - ~ (b3 - bl l~i)  + i b2 - -~ a tb ,  "yexp(l~+ito)To 

1 [  ( 1 ) ]  
+ ~ (b 3 + bll'~i) - i b2 - -~ a lb l  ~ exp(~ - im)To + c.c. (5.10) 
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Equation (5.10) contains nonhomogeneous terms. The uniform solution 
is required to eliminate the secular terms. This elimination introduces the 
solvability conditions which correspond to the terms containing the factor 
exp llT0. Thus in order to analyze the solution of equation (5.10), we need 
to distinguish between two cases: the nonresonance case, when the frequency 
to is not near fli; and the resonance case, which arises when the frequency 
to is approaching the frequency l-li or 21-1/. 

5.1. The Case of  m Not  Near 2 f l i  

In order to obtain a uniformly valid expansion, the coefficient of the 
factor exp(l'lT0) in equation (5.10) must vanish. Thus, we get 

D~(T~,  T2) = 0 (5.11) 

It follows that ~/must be independent of Ti, which gives ~/= ~(T2). Therefore, 
the first-order uniformly valid expansion is given by 

1 ((b3 - bl~ i )  + i(b2 - �89 "Y exp(l~ + ito)To 

+ (b3 + blfli)21-Ii-+i(b2co - �89 "Y exp(f/ - ito)To) + c.c. (5.12) 

Substituting the solution of  n0 and ~l into equation (5.6) of  the second order 
in ~, we obtain 

(D 2 + at Do + a2)~q2 

( i { (  1 ) } 
= -(19~ + 2ifl iDz) - ~ b2 - ~ a~b~ + i[b~(l'li + to) + b3] A 

i 
2 

i 
2 

i 
2 

2 

i 
2 

[bl + 4(1)i + to)A]Di,y exp(~ + ito)To 

- - [bl + 4 ( ~ " ~ i  - -  to)B]Dl'l exp(fl - ito)To 

+ i[bj(l~ i + to) - b3]}A~/ 

+ i[bl(lIi - to) + b3]}B~ 

exp(fl + 2ito)T0 

exp(l-I - 2ito)To + c.c. 

(5.13) 
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where 

A = C1 + i E t ,  B =  C 2 + i E 2  

1 
Cj = 2to[2~i + (_) j - l to]  (b3 + ( - )J f l i )  

(--)J-I (b2_  1 ) 
E./= 2to[21-1i + (_) j - l to]  ~ albl , j = l, 2 

In order to determine a particular solution of  the above equation, we 
need to distinguish between the case of to being away from lqi and the case 
of to approaching l l  i. 

(I) The case of  to not near l-I i. The vanishing of  the terms that produce 
secular terms in equation (5.13) yields 

D2"y + (Pl + iP2)'y = 0 (5.14) 

where (5.1 l) has been used. The real coefficients Pl and P2 are given by 

PI = ~ i i  b2 - -~ albl (Ci + C2) 

[bl(l-li + to) + b3]Ei - [bl(l'li - to) - b3]E2} (5.15) 

P2 = - ~ i  b2 - ~ atbt (El + E2) 

+ [bl(l~i + to) + b3]Ci + [bt(f~i - to) - b3]C2} (5.16) 

Equation (5.14) has the following solution: 

"y(T2) = ~e -w'+ip2)r2 

with a constant ~. 
Therefore, stability is present in the nonresonance case (where to is away 

from 2fli and to away from l-li) when 

Pi > 0 (5.17) 

(II) The case of co near fl i .  We express the nearness of  to to l-li by 
introducing the detuning parameter ~ defined as 

to = ~'~i -}- 1~2~ (5.18) 
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and hence 

- i ( ~ i -  2to)T0 = i~"~iT 0 W 2i8T2 (5.19) 

The elimination of the terms that produce secular terms in equation (5.13) 
implies 

D2"y + (Pl + iP2)'Y + (Ql + iQ2)~l exp 2i8To = 0 (5.20) 

where the solvability condition (5.11) is used. The coefficients P~ and P2 are 
defined by (5.15) and (5.16), while the coefficients Qi and Q2 are given by 

1 b2 - albl C2 - [bt(l'li - ~)  + b3]E2 (5.21) 
Ql - 4 ~ , - ~  i 

Q2 = ~ b2 - ~ alb~ E2 + [bt(~i  - to) + b31C2 (5.22) 

To solve equation (5.20), we let 

,/(7"2) -- [f~(T2) + if2(T2)lexp iSTo (5.23) 

wherefl(T0) and f2(To) are real functions of T2. Inserting the solution (5.23) 
into equation (5.20), separating the real and imaginary parts, we obtain the 
following equations that govern f~(To) and j~(To): 

[D2 + (P1 + Ql)lf~ + (Q2 - P2 - 8)f2 = 0 (5.24) 

[D2 + (Pt - QO]f~ + (/'2 + Q2 + 8)A = 0 (5.25) 

If the pair of equations (5.24) and (5.25) have the solutions 

fl(T2) = .fl exp vTo + c.c. (5.26) 

f2(T2) = ./~2 exp vTo + c.c. (5.27) 

with real constants fl and)~2, then the characteristic frequency v is given by 

v 2 + 2P~v + [82 + 2P28 + p2 + p2 _ (Q~ + Q2)] = 0 (5.28) 

Therefore, and in view of the Hurwitz criteria, the stability requires the 
conditions 

P~ > 0 (5.29) 

82 + 2P28 + (p2 + p~) _ (QT + Q~) > 0 (5.30) 

The first condition is satisfied in the nonresonance case, while the second 
one can be written in the form 
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(8 - 8~')(~ - 8 * )  > 0 

which can be satisfied when 

> ~t' and ~ < ~* ( ~  > ~ )  

where 

(5.31) 

and 

o r  

and 

tO = ~'~i + E2[ - -P2  - -  (Q~ + Q22 - p~)m] 

tO - -  l'~i 
el 2 = (5.35) 

-P2 + (Q~ + Q22 - p~),/2 

tO - l'~i 
692 = (5.36) 

-P2 - (Q~ + Q~ - p{)l/2 

and hence 

5.2. T h e  Case  o f  co N e a r  2 f l i  

Let us return to equation (5.10) and analyze it in the case of the frequency 
tO approaching twice the frequency ~,-. In order to obtain a uniformly valid 
expansion in this version, we express the nearness of tO to 2~,- by introducing 
the detuning parameter I~ according to 

tO = 21"~i + 2e l~  ( 5 . 3 7 )  

- i ( l ~ i  - tO)To = il '~iTo + 2ip~Ti (5.38) 

Thus, the elimination of the secular terms from equation (5.10) gives the 
following solvability condition: 

i [ ( 1 ) ]  
Dl'v -- ~ (bl~~i + b3) - i b2 - ~ a2bl ~/exp 2iv.T1 = 0 

(5.39) 

(5.34) 

8,*2 = -P2 -+ (Q{ + Q22 - p2)ln (5.32) 

In view of (5.18), we can write the transition curves separating the stable 
region from the unstable region 

tO = ~'~i + ~2[- -P2 + (QI  2 + Q2 _ p2)1/2] ( 5 . 3 3 )  
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The uniformly valid expansion for "ql(To, Tl, 7"2) in this case is 

( b 3 - b , ~ i )  + i(b2 - 1 a , b l )  

qql ---~ 2to(21"~i + co) 
~/(Ti, T2) exp(~  + ito)To + c.c. 

(5.40) 

where 

R l  = - - - -  
1 (1) 

81-~i b2 - -~ albl [bl + 4(D~ - to)]C2 

- 4(f~i - o~)(btf~i + b3)E2~ + PI 
J 

(5.44) 

Substituting (5.7) and (5.40) into (5.6), we get 

(D 2 + aiDo + a2)"q2 

( i(( ) } = - ( D ~ + 2 i l ~ i D 2 ) - ~  b2- '~a lb l  +i[b1(f~i+co)+b3] A 

i 1 - - b 3 ] } B ) " /  

i 
+ ~ [bl + 4(l l i  -- ~)BID:/exp l~To exp 2i~Tl + NST + c.c. 

(5.41) 

where NST stands for terms that do not produce secular terms. The elimination 
of  the secular terms appearing in equation (5.41) gives 

( i(( 1 ) 
--(DE + 2i~D2) - -~ b2 - -~ a~b~ + i[bl(l~i + co) + b3] ,4 

i 1 
- ~ {(b2 - ~ albl) + i[bl("i - to) - b3]}B)~/ 

i 
+ ~ [bl + 4(f~i - to)B]Dl9 exp 2ilxTl = 0 (5.42) 

Combining the solvability condition (5.39) with the above one gives 

O2~ q- (RI q- iR2)~l + I-~(SI + iS2)~l exp 2il.~Tl = 0 (5.43) 
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t (4(b2 i ) 
R2 = -8~------i "~ albl (l"~i -- o)E2 

[bl + 4(1-~i - to)](bll'~i 4- b3)C2) + P2 (5.45) + 

1 ( , )  
S~ = " ~ i  b2 - ~ albi (5.46) 

1 
$2 = ~ (bll~i + b3) (5.47) 

Assume that equation (5.43) admits a nontrivial solution in the form 

",/(TL, T2) = [u(T2) + iv(T2)] exp i~r~ + c.c. (5.48) 

with real functions u and v. 
Substituting (5.48) into (5.43) and separating the real and imaginary 

parts, we get 

[D2 + (RI + IXSl)]U + (IxS2 - R2)v = 0 (5.49) 

[D2 + (Rt - IxSl)]v + (R2 + I.zS2)u = 0 (5.50) 

Since the above equations are coupled linear differential equations of  the 
first order, their solutions can be sought in the form 

u(T2) = a exp hTz + c.c. (5.51) 

v(T2) = ~ exp XTz + c.c. (5.52) 

with real constants a and ~). 
Inserting (5.51) and (5.52) into equations (5.49) and (5.50), for the 

nontrivial solutions of  fi and 9, we get the following dispersion relation: 

h 2 + 2R~X + JR, 2 + R, 2 - ~2(S,2 + Sb]  = 0 (5.53) 

Since the necessary and sufficient condition for stability is present when all 
roots of  the above equation have negative real parts, stability occurs when 

Rt > 0 (5.54) 

n 2, + R~ - ~2(S~ + Sb  > 0 (5.55) 

Thus the transition curves separating the stable region from the unstable one 
correspond to 

R~ 
ix z - (5.56) 

s ,  ~ + s~ 
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Hence, in view of (5.37) we obtain the transition curves in the form 

and 

2R2~ 
~o = 2~i  + + O(~ 2) + . . .  (5.57) 

(S~ + $2) 1/2 

2R2~ 
= 21~i (S 2 + S2)U 2 + O(e 2) + "'" 

In terms of the amplitude disturbance we get 

(m - 2f~i)(S 2 + 82) 1/2 

r = 2R2 

and 

(5.58) 

(5.59) 

(21q / -  to)(Si z + S~) t/z 
~2 = 2R 2 (5.60) 

The values of ~ and t~ as described by equations (5.32) and (5.56) are 
the critical values of the disturbances. These critical values, which are known 
as the transition curves, separate the stable from the unstable region. 
According to Floquet's theory (Nayfeh, 1985), the region bounded by the 
two branches of the transition curves is unstable, while the area outside them 
is stable. 

6. CONCLUSIONS 

The linear ferrohydrodynamic Kelvin-Helmholtz flow on a horizontal 
interface between two inviscid fluids has been studied. The two fluids are 
enclosed between two horizontal rigid plates in parallel with the interface. 
The interface admits the presence of  mass and heat transfer. The system is 
stressed by a uniform oblique magnetic field. In the stationary state, the fluids 
are streaming parallel to each other in an oscillatory manner. The analysis 
was undertaken principally by clarifying the coupling between the effect of 
mass and heat transfer and the periodic Kelvin-Helmholtz flow on the stability 
of the horizontal interface between two ferrodynamic inviscid fluids. All 
modes of disturbances are considered. The stability of the system is analyti- 
cally discussed. We draw the following conclusions: 

1. In the presentation of the problem, the effects of mass and heat 
transfer are revealed through a single parameter c~. Thus, the correlation of 
the experimental data would be very greatly facilitated by this simplification. 

2. The stability criterion in the absence of the periodicity of the streaming 
velocities is independent of the mass and heat transfer coefficient a,  but differs 
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from that of the same problem without mass and heat transfer. Generally, it 
is found that the mass and heat transfer coefficient tends to destabilize the 
system. The same role is played by the transverse magnetic field, while the 
longitudinal one has a stabilizing influence on the interface. The latter can 
be used to suppress the influence of the parameter a.  

3. The parametric excitation of the oscillatory streaming results in a 
second-order ordinary linear differential equation with periodic coefficients. 
It has been solved by means of the multiple-time-scales scheme. The analysis 
reveals the existence of  both resonant and nonresonant cases. The resonance 
modes appear due to oscillatory Kelvin-Helmholtz  streaming. The transition 
curves are obtained. According to the Floquet theory, the region bounded by 
the two branches of the transition curves is unstable, while the area outside 
them is stable. 
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